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ABSTRACT

The time-optimal control law as a function of the states for second and third-order
linear regulators with real eigenvalues was derived. Notions of a switching curve for the
second-order system and switching surface for the third-order system was introduced. A set
of states was found which divided the state space into two distinct regions, in one of which

the time-optimal control was +1 and in the other of which the time-optimal control was -1.
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I. INTRODUCTION

The study of specific time-optimal systems has been continuing in the development of
modem control theory. To solve an optimization problem, we must first define a goal or a
cost function (performance measure) for the process we are trying to optimize. With a
knowledge of the cost function, and the system states and parameters, we can determine the
control which minimizes (or maximizes) the cost function. For some systems a criterion of
minimum response time may not be the most suitable measure of system performance.

In this thesis, a minimum-time control for a linear, time invariant third-order regulator
with three distinct, nonpositive, real eigenvalues is developed. The time-optimal control, as
a function of the states, must transfer the system from any arbitrary initial condition to a target

set (origin of the state space) as quickly as possible.




I1. MINIMUM-TIME CONTROL

The goal in a minimum-time problem is to transfer the state of the system to a target
set as quickly as possible. We assume that the target set is the origin of the state space. For

this reason we call this problem the linear time-optimal regulator problem. [Ref. 1]

A. PROBLEM STATEMENT
Consider the dynamical system
2(0 = Ax(0) +Bu() 2.1
where the n-vector x(¢) is the state, the system matrix 4 and the gain matrix B are n x n and
n X m constant matrices, respectively. The m-vector a(#) is the control.
We assume that the system (2.1) is completely controllable and that the components of u(f)
are bounded in magnitude by the relation
I=f0] < 1 J = 12em (22)
Given that at the initial time ¢, = @, the initial state of the system is
@) = §. (2.3)
we are asked to find the control & *(¢) that transfers the system from § to the origin @ in
minimum time. [Ref. 1]
If the output y{¢) of the system (2.1) is related to the state x(f) and the control s(¢) by

the relation

»(®) = Cx(0)+Du(0) )




then a control that drives the states to the origin can be extended in such a way as to drive the
output to zero and hold it at zero thereafter [Ref. 1]. If ¢°* denotes the minimum time required

to force the states to the origin, then at ¢ = £°, we have

x() = 0 2.5)
yxn =9
where the control is set

=) =0 Ve>e* 2.6)

B. NECESSARY CONDITIONS FOR THE TIME-OPTIMAL CONTROL

1.  Performance Measure
In order to evaluate the performance of a system quantitatively, we must select
a performance measure. An optimal control is defined as one that minimizes (or maximizes)
the performance measure. Mathematically, the performance measure to be minimized for the

minimum-time problems is defined as
[/

J'{:“"I"o 2.7)
2. Pontryagin's Minimum Principle
The Hamiltonian function for the problem is

HIx(0,p()u(O:¢] = 1+p T(()Ax(0) +p () Ba(e) (2.8)
where pff) is the costate vector. Let us assume that a time-optimal control exists and
transfers the initial state (2.3) to the origin @ in minimum time ¢°. If x*(f) denotes the
optimal state trajectory of the system (2.1) corresponding to a *(f), originating at E at
¢, = 0 and hitting the origin in minimum time, then x*(¢) and p *(¢) need to satisfy the

canonical equations given by




2%0 = OH | x "(Owp "(m "(t ]

»°@
or equivalently
2%(f) = Ax°()+Bu ()
and
PO - '3ﬂl8'(ﬂg (s (¢ ]
ox 0
or equivalently

PO =-Ap"0
with the boundary conditions

x°@)=¢
x°(t7)=0

The necessary condition for all admissible controls a(f) V ¢ € [0,¢°] is

1+p°T(QAx (O +p " ()Bx (9 < 1+p°T(OAx* () +p T Bu(9

2.9)

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

In other words a necessary condition for u *(¢) to minimize the performance measure J is

H(x"(O)p () (1] < Hlx (P "(O)x)¢]

Equation (2.14) yields the relation

u*(Q) = -sign{BTp*(9}

V¢ee[0,7]

(2.15)

(2.16)




Equation (2.15), which indicates that an optimal control must minimize the Hamiltonian, is
called Pontryagin's minimum principle [Ref. 2]. Let us now state some important theorems

concerning the time-optimal control.

a. Controllability

Controllability is very important, because we consider problems in which the
goal is to transfer a system from an arbitrary initial state to the origin while minimizing the
performance measure. Thus controllability of the system is a necessary condition for the

existence of a solution.

A linear, time-invariant system is controllable if and only if the n x mn matrix

Q = [B|AB|4B|...|4""'B] (2.17)
has rank 7 (order of the system). If there is only one control input (m = 1), a necessary and

sufficient condition n x n matrix @ to be nonsingular.

b. Observability
A linear, time-invariant system is observable if and only if the n x qn matrix
R = [c T'A TC Tl““l(A T)n-lc 1'] (2- 18)

has rank »n. If there is only one output (q = 1), a necessary and sufficient condition for

observability is that R to be nonsingular.

c. Existence
If all of the eigenvalues of the system matrix A have nonpositive real parts,

then an optimal control exists and it is bang bang.




d Uniqueness
If an extremal control exists, then it is unique. A control which satisfies the
necessary conditions in equations (2.9) through (2.15) is called an extremal control.
e. Number of Switchings
If the eigenvalues of the system matrix 4 are all real and a unique time-

optimal control exists, then the control can switch at most n-7 times.




III . TIME-OPTIMAL CONTROL OF A SECOND-ORDER

PLANT WITH TWO TIME CONSTANTS

A. TIME-OPTIMAL SYSTEMS
The problems we consider in this and the next chapter will involve a single control
variable s(f). The systems we examine are time-invariant, and the control is to be a function
of the states. Time-optimal control will be a piecewise constant function of time over the sets
or regions of the state space. These sets are separated by curves in two-dimensional space,
and by surfaces in three-dimensional space. The separating sets are called switching curves,
and switching surfaces. [Ref. 1]
The procedure that will be used in finding the optimal control for both second and third
order regulator problems can be outlined as follows :
® Define the problem precisely
. ® Form the Hamiltonian function
® Find the H-minimal control
® Find the equations of the costate variables
® Determine the control sequences that are candidates for the optimal control

® Determine the switching curves and switching surfaces that divide the state space into
various regions

® Find the control sequences that satisfy the boundary conditions

® Simulate the linear time-optimal regulator with initial conditions emanating from each
possible region of the state space.




1.  Problem Definition
We consider the system described by the second-order differential equation

fl(ﬁ.pu +p)!!ﬁ+.p,(q - () 3.1
de? &t

where y(¢) is the output, &() is the control which is restricted in magnitude by the relation
=@ < 1 (3.2)

and « , p are real, distinct, nonzero eigenvalues. The transfer function of the system is

Yo | -1
v - %O e 3-3)

with real polesat s= -a and s= -§ . Using Eqn. (3.3) the state space equations can be written

in matrix form as

° :
- 34
»© [-.p _(“p)].v(t) H u(f) (3.9

Note that Eqn. (3.4) is of the form
M) = Ay() +Bu(d) (3.5)

First we need to check the controllability and the observability of the system.

o-f Ly bl




Since there is only one control input and both matrices are nonsingular, the system is
controllable and observable. Since the eigenvalues of 4, -« and -p are nonpositive real
numbers, an optimal control exists, and it is unique.
Now, we define a matrix P whose columns are the eigenvectors of 4, and a new dependent
variable g(¢) by

€9 = P'y(0 X))

Then, substituting for y(¢) in Eqn. (3.5), we obtain

HO) = P 'AP+P 'Bu(l) (3.8)

where P and P~! matrices are

1 1 L 1 |8
B B

Eqn. (3.8) can be written in matrix form as

-1

-« 0 (=-B)

- + 3.10

() L -p 0] ] u(f) (3.10)
a-p




or in scalar equations

40 = ~a0- —— 0

“‘;” G.11)
(=-p) 4

4@ = -pg,(9+

For simplicity, we define the state variables x,(9 and x,(¢ by the relations

x,(0 = a(c-P)5, ()

(0 = -Ple-P)z, (0 ¢.12)
Then, x,(9) and x,(¢) satisfy the differential equations
‘1(0 - -.31(0-"(0 (313)
(0 = -px,()-Pul)
or in matrix form
B R (3.14)
0 [ . -p}'m [—p]'“’
Note that Eqn.(3.14) is of the form
) = Ax()+Bu() (3.15)

Figure (3.1) illustrates in block diagram form, the linear transformation necessary to obtain

x,(6) and x,(9) from y(#) and y,(9). [Ref. 1]

10




y®

y’(t)

Figure 3.1 Block diagram of the linear transformation between x and y variables

We have thus transferred the original system (3.5) into an equivalent uncoupled
system (3.15) using similarity transformations. Note that existence and uniqueness of time-

optimal control holds also for the system (3.15).

2. Hamiltonian, H-Minimal Control, and tke Equations of the Costate
Variables
Let us write the Hamiltonian for this particular problem. We have
H = 1-ax,0p,(0) - P x,(0p,(0) +5() [ - 2p,(0) - PP,(A)] (3.16)
Since the Hamiltonian & is linear in the control vector a(¢f) , minimization of the Hamiltonian
with respect to s(f) requires that [Ref. 3]

u() = sign{ep,(9) + Bp,(0} (3.17)

11



where the costate variables p () and p,(9) satisfy the differential equations

- OH
»HA ax, (9 0 (3.18)

-
500 @ pr,0

so that
PO = e*p,(0)

2,0 = e*p,(0). (3.19)
Substituting Eqn. (3.19) into Eqn. (3.17), we find that
af) = sign{xp(0)e™+ pp,(0)e¥} (3.20)

where the function ¢(9) = ap,(0)e*‘+ Bp,(8)e?* has at most one zero. Therefore, we

conclude that the four control sequences

{+1},{-1),{+1,-1},{-1,+1} (3.21)

are the only candidates for the time-optimal control of this system.

3. Equation of the Switching Curve

Since, the control must be piecewise constant, we solve Eqns.(3.13) using

#) = A =21 (3.22)

12




to obtain the solution

%00 = (,+4)e"*-A 3.2)
20 = (5, +8)e""-a

where §, = x(8), I = 1,2. Eliminating the time ¢ in Eqs. (3.23) and setting

*" -E (0<s<p) 3.29)
we find that
. -Ae x,(9+a)¢ (3.25)

Equation (3.25) describes a trajectory in the x, x, plane. The trajectory originates at the state
(§4,€,;) and evolves as a result of the action of the constant control #(¢) = A . Since the
eigenvalues are negative, then the trajectories generated by s(¢) = -1, which we call -/
Jorced trajectories, tend to the state (1, 1) of the state plane. The trajectories generated by

a(?) = +1 which we call +/ forced trajectories, tend to the state (-1, -1) of the state plane

[Ref. 1]. Since,
Im o= (gearta-a a1 (3.26)

where A, are the eigenvalues and A = 1. The -] forced trajectories are shown in
Fig.(3.2) and the +/ forced trajectories are shown in Fig.(3.3). Since the origin of the
state space is the desired terminal state and since we must reach the origin using either

control @ = +1 or the control # = -1, we isolate the two forced trajectories which pass

13




through the origin. We denote these trajectories to the origin by vy, andy_ . More precisely, v,

is given by
L
Y. = {(x%): -h(x,*l){ 1 ) -0 x,>0, x>0} (3.27) |
1+x,
|
The y_ curve is given by
®
Y. = {(x%): l+(x,-l{ i l.r. ] = & x,<0, x,<0} (3.28)
it |
3
il |
1
o+ ;
|
-1 W
-2F 4
.3 . s A
3 2 -1 0 1 2 3

Figure 3.2 -1 Forced Trajectories




Figure 3.3 +1 Forced Trajectories

Using the shape of the forced trajectories shown in Figs. (3.2) and (3.3), we can
conclude that only the control sequence { +1 } can force any state on the y, curve to the
origin. Similarly, only the control sequence { -1 } can force any state on the y _ curve to the
origin. Thus, we have derived the control law,

If (xpx,) €Y, then a°(@) = +1 (3.29)

If (xpx,) ey _ then u°(@) = -1 (3.30)

We call the union of the y, and the y_ curves switching curve [Ref. 1]. Then
combining Eqns. (3.27) and (3.28), the y curve is given by

3.31
Y = ((xpx,) : x, = i‘-luhux,n'-m @330

le

15




Switching curves in x, x, plane for uncoupled system (3.15), and in y, y, plane for the

system (3.5) are shown in Figs. (3.4) and (3.5).

Ay .
3
3 1+
=3
u=+l
L1
R,
1 T T L] L 4’ x'
-3 -2 -1 1 2 3
.
2 J
The y switch carve
. -2
u=-]
.3
Y.
VR L L

Figure 3.4 Switching Curve for the system (3.15)

A,

.2

+1

¥

o

16

Figure 3.5 Switching Curve for the system (3.5)




Let us denote the set of states to the right of the y curve as R, and the set of

points to the left of the y curve as R_. Clearly,
R, = {(xpx,): =.<i-—|l(l+lx,l)'-ll}

R = {(2p%,): x,>|—::—|lu+ls,|)'-1n

S‘
" (3.32)

Using Eqns.(3.32), we can conclude that the control sequence { +1, -1 } can force any
state belonging to set R, to the origin, and control sequence { -1, +1 } can force any state

belonging to set R_ to the origin. Then, time-optimal control, as a function of the state

(x,%,) is given by

° = a(xpxy) = +1 V (xpx) €Y UR, (3.33)
2° = a%(xyx)= -1 V (xx)ey uvR '

or in other words, the optimal control in terms of the state variables

. (xpx,) = d:u{if:—lunlx,n'-x,-ln (3.34)

An alternative solution to the optimal control in terms of states can be found in Ref. 4. We

can easily obtain equations for switching curve and time-optimal control in terms of y, and

Y1 We find that, x,(9) and x,(¢) are related to y,(9) and y,(#) by

x,(6) = -aBy,()-ay,() (3.35)
x,(0) = -aBy,(9-By,()

The equations of the switching curve of time-optimal control are given by

_ _ - -Gﬂy.(‘)-ﬂ.rz(‘) _ _ _
P B @ e PRI g5

17




5 *(y00,)=sign (s 2,00+ By, - '_::’;“Z,'_:’::z" (11+1-02,0)- a2,011° - 1)X3.37)
Equation (3.36) and (3.37) demonstrate the advantage of using x,(f) and x(9 as state
variables.

4.  Analytic Solution for the Minimum Time t’
We may now evaluate the minimum time ¢ * required to force any initial state
(x,,%,) to the origin (0, 0) using the time-optimal control law given by Eqns.(3.33). Let us
consider an initial state X = (x,x,), as shown in Fig. 3.6, and the time-optimal trajectory

XWO 1o the origin, where W = (w,,w,) is on the y curve [Ref. 1].

-t
w

Figure 3.6 Time-optimal trajectory

18




Let us assumes = A® = #1 is the optimal control applied during the trajectory WO, ¢ is
the time required to go from W to O, and ¢, is the time required to go from X to W. Then,

using Eqns.(3.23) we have

0= (w+A%)e"4-A"

3.38
0= ("z"‘A.)‘-""'A. ( )

Solving for & in the above equations, we find that

‘2 = --l_l.‘[ A° ) - —_l-l.{ A’ ) (339)
« w+A*® p w,+A°

and from equation (3.38) we have

0 = "A."'("z""A')[ A‘ !‘

w,+A°] (3.40)

where ¢ =

Ly
a
Using the shape of Fig. 3.6 and Eqns. (3.29) and (3.30), we conclude that,

A” = sign{w, ) = signiw,} (3.41)

We again use Eqns. (3.23) to obtain ¢,. Then, we have

w, = (x‘-A')c-"’-'-A'

w, = (5-A%ePieA" (3.42)

19




Note that we uses = -A° . Since, during the trajectory X we have & = -A°. Solving for

¢, in the above equation we obtain

N

and from Eqn.(3.43), we have

-ar A w,-A°
w, +(x, -y (.44)

. 1 A* . w,-A°
n -—]o
‘ c l(wl-n-A‘)(xl—A')] (3.45)

We want to find ¢° as a function of x, and x, only, so we must eliminate w, from Eqn.

(3.45). Combining Eqns.(3.40) and (3.44), we find that

w-4A"° A* )¢
0=-A"+| 2A°+ A" 1
A [ A+(x,-A ){x,-A°] ][w,+A‘] (3.46)

which provides us a relationship between w, x, , and x, For specific values of « and p

Eqn.(3.46) reduces to a quadratic expression. For example for ¢« = 1 and p = 2 , we have

w, = 4xl-2x,-2A- x:t/(sA ‘x,—lGA .xl+8xl’ X1 _onl )3 (347)

20




Choosing the appropriate sign for w, and substituting into Eqn.(3.45), we can
obtain an analytic expression in terms of the state X = (x,,%, ) . Since we know the sign of A °
from Eqns.(3.33), we can easily obtain the switching time and the minimum time ¢°, required

to drive any initial state to the origin.

S.  Simulation of the Linear Time-Optimal Regulator

Using a computer simulation, we test the accuracy of the solutions by choosing
the initial conditions in the regions defined by Eqns.(3.32) with @ = 1 and p = 2. Figure
3.7 shows the state trajectories for the system (3.15) emanating from the region R, . Time-
optimal control as a function of time is shown in Fig. 3.8. As we claimed before, the control
sequence { +1,-1} drives the states to the origin with at most .»-/ switching in time-optimal
control. State trajectories in y, y, plane are shown in Fig. 3.9. Next, we simulate the system
(3.15) with initial conditions emanating from the region R_. State trajectories and the time-
optimal control are shown in Fig. 3.10 and Fig. 3.11. This time, the control sequence {-1, +1}
drives the states to the origin with at most n-/ change, in the control function as we suggested
before. State trajectories in y, y, plane are shown in Fig. 3.12.

The desired terminal state was the origin of the state space. Upon reaching the
origin the control effort must be shut off in order to maintain the system at rest. In both
simulations switching time and minimum time ¢* agree with the calculated values obtained

from Eqns.(3.39), (3.43), (3.45), and, (3.47).

21
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IV. TIME-OPTIMAL CONTROL OF A THIRD-ORDER

PLANT WITH THREE REAL EIGENVALUES

A. GENERAL

In the previous chapter we solved the time-optimal control problem for a second-order
plant. We showed that the time-optimal control can be determined as a function of the state
by means of a switching curve which divides the state plane into two regions. In this chapter
we consider the time-optimal control problem for a third-order plant with three distinct real

and negative eigenvalues.

1.  Problem Definition
We examine the system described by the third-order differential equation
0 .. . O, 0. o , -
0 +(@+p+y) “, (ap +ay+vp) = = +(p)r9 = (9 @
where a, B, and y are real, distinct, nonzero eigenvalues. The transfer function of the

system is
_Yﬂ = G(s) = 1
U(s) (s+a)s+B)s+Y) 4.2)

Using Eqn.(4.2) the state space equations can be written in matrix form as
0 1 ] 0
= o 0 1 |9+jo| = 43)

-aPy -(aPp+ay J) -(x+p+y) 1
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Again, as a first step we need to check the controllability and the observability
of the system (4.3). Since Q and R matrices, given by Eqns.(2.17) and (2.18) are both

nonsingular, the system is controllable and observable. The eigenvalues are all nonpositive and

real, so an optimal control exists.

Using partial fraction expansion, we decouple the system (4.3) with 2 and P~ given

by
1 1 1
(P-c)vy-a) («-PXY-B) (s-YNP-Y)
P « B Y
(c-BXY-=) (s-BXP-Y) (=-YXY-B)
'3 ’3 Yz
[(B-aXy-&) (s-BXNY-B) (es-YXNP-¥)
and «p Py 1
P!a|gy Yy+ta 1
«p p+a 1

As before we use Eqns.(3.7) and (3.8) to obtain

-« 0 O 1
H) =0 -p 0|z)+|1]m(®)
e o -y 1

where g(¢) satisfies the differential equations

4(9) = -az,()+u()
4(0 = -p5(9+x(9)
4(0) = -v5,()+u(9)
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For simplicity, we define the uncoupled state varisbles ,() , (9, and x,() as

x(0 = g,
%0 - P50 4.38)
x(0 = v50)

where x,(0), x,(9, and x,(9) satisfy the differential equations

2,00 = -ax,(0)+anfl)
2,(0 = -px,(0+p=() 4.9)
20 = -vx,()+vu(9

or in matrix form

-« 0 0 s
A =0 -p 0|x@+|pla()
*o 0 -y Y (4.10)

2. Hamiltonian, H-Minimal Control, and the Equations of the Costate
Variables

The Hamiltonian is
H = 1-ap,(0x,(0) - PP,(0x,() - Y, (0%5(0) +u (@[ ap,(9) + B P, () + Y2,(I] 4.11)

The control #(¢) which minimizes the Hamiltonian is
u(0) = -sign{ap,()+Bp,()+YP,()) (4.12)
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where the costate variables pg), ! = 1,3,3 satisfy the equations

20 - '3%6 - ap,(0

- -—-—w -
A0 =0 (X0

- —m -
P.(Q a" @ Y’;(o

so that

PO = P (®)e"
20 = p,(0)e*
J XU ’:(.)‘ v

Substituting Eqn.(4.14) into Eqn.(4.12), we find that

u(Q) = - sign {sp,(0)e*’ + pp,(0)e?* + yp,(8)e "’}

Then, the candidates for time-optimal control are the six control sequences

{+1}, {-1)}{+1,-1}, {-1,+1),{+1,-1,+1}, (-1 +1,-1}

3. Equations of the Switching Curve and the Switching Surface

Again, we solve Eqns.(4.9) using

a0 = A = %1

to obtain the solutions
(0 = (E,-A)e "*+A
%0 = (§,-A)M+A
x(0) = (§,-A)e "'+ A
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Eliminating time ¢ in Eqns.(4.18), we find that

-a)2
200 - (:.-A)[?-:-‘:)-.A
:“_‘ 5 (4.19)
x‘m - ({,-A{‘ -A).+A
1

Eqn.(4.19) describes a trajectory in the three-dimensional state space. From Eqn.(4.18) we

conclude that
: =4, i=123 4.20)
where A = #1. This means that a trajectory generated by & = +1 tends to the point (1,1,1)
and a trajectory generated by & = -1 tends to the point (-1,-1,-1).
Now, let { V, } denote the set of states which can be forced to the origin (0,0,0)
of the state space by application of the control @ = A*=#1. We use x, to indicate a state

belonging to the set { V, } and x,,, x,,. xutoindicateﬂneoomponentsofx, . If ¢ denotes

the positive time required to forcex, to the origin usings = A*=21, then from Eqn.(4.18)

we have
0= (xu-A')c'"'-o-A‘
0= (S,J-A’)‘-"""A. (42])
0= (x,',-A')c'"N-A‘

or equivalently

X, = A*-A%""
X, = AT-A%e’" 4.22)
x," - A“A.""
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Let { V, } denote the set of states which can be forced to the set { V, } by
application of the control & = -A°. Again, let vector x, indicate the states belonging to set
{ V,} and the components of x, be x,,, x,,, and x,,. If ¢, denotes the positive time required

to force x, toastate x, € { V,}, then using Eqn.(4.18) we obtain the states belonging to

{Vi}.
Xy =y +8 e "-A"
X = (g tae?4-40 (4.23)
% = (5y*8 e TH-A"

or equivalently

X, - —A*+(x,+A e
Xy = A%+ (ry, v e (4.24)

x’.‘ - 'A.‘f(xu*A.)""
Thus, we have defined the sets { V,} and { V, }. Eqns. (4.22) and (4.24) imply that the
trajectory originating at any point x, € { V, } and generated by # = -A* will remain on the
surface { V, } until it hits a point on the set (curve) {V,}.

To simplify the Eqns. (4.22) and (4.24), we define new variables g, and g, by

g = et

g = e (4.25)
Using these new variables, Eqns. (4.22) and (4.24) become
X, = AT-A%%"

X, = AT-ATP (4.26)
X, ~ A°-A%gT
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x, " -A’a-(xu+A‘)x"
%, -A'#%*")t‘. 4.27)
tl.l - -A’#‘;."b"""

Substituting Eqns. (4.26) in Eqns. (4.27) we obtain

A.xu = _l +u'I _("")I
A'g, = -1 +2¢° - (g, 5)" (4.28)
a'x, = -14247 - (g5
For simplicity, we define new variables w,, and w, by
-y 4.29)
;T 55
Since we specified the times ¢, and & positive, this implies that
1<z Pe12 (4.30)
where g, is given by Eqn.(4.25). Combining Eqns. (4.29) and (4.30), we obtain the inequality
1<w,<w, (431
Using the variables w, , and w, , Eqns. (4.26) and (4.28) become
A%°%,;, = 1+2w " -w"

A’x,, = 1+3wl-w? (4.32)
A%y, = 142w -w)'

A%,y = -1+42w,"-w,"
A%, = -1+2w/-w,}? (4.33)
A%, = -1+2w," -w,’

Now, let us state some important properties of thesets { V, } and { V, }.
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® The sets { V, } and { V, } are symmetric about the origin.

@ In the three-dimensional state space, the set { V, } is a curve and { V, } is a surface.
{ V,} divides the state space into two parts.

® The sets { V,} and { V, } are formed by families of smooth and continuous
trajectories.

® The sets { V,} and { V,} are infinite in extent. The origin is contained in the set {V,},
the set { V, } is containedin { V, }.

® The state (1,1,1) is above the surface { V,}, and the state (-1,-1,-1) is below the surface
{Vi}

In order to determine the optimal control law, we need to find whether the state

x given by

x = (4.34)

is above, on, or below the surface { V, }. We set

11 T *po o R 4.35)

in the first two Eqns. of (4.33) and solve these two equations to determine the values of

w,, wyand A® = +1 or A* = -1 . We need to satisfy the inequality given by (4.31).

Then, we substitute the values of w, , w,, and A * in the last equation of (4.33) and evaluate

x, ,- We can compare the computed value of x,; Wwith the last component of the state x.
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X, -%y, >0 (4.36)
then we say that x is above the surface {V,}. If

x,-x,, =0 4.37)
thenx € {V,}, and if

Xy -%, <0 (4.38)
then we say that x is below the surface { V, }. Figure 4.1 shows an illustration of the
projection x, , of a state x on the surface { V,} [Ref. 1]. We draw a straight line parallel
to the x, axis through the point x = (x,,x,,x,) which intersects the surface { V,} at a point
x, = (xyx5x,,) .Comparizon of x, with x,, indicates whether x is above, on or below the

surface.

X, x-(xl,x:.x’)

x=(x,,x,,x%,)

portion of the surface { V,}

Figure 4.1 Projection x , of the state x on the surface {V,}
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4. Optimal Control u’
Time-optimal control & * , which forces any state x to the origin can be defined

in the following way

If xisabove{V,}then u° = (-1)

If xisbelow {V,}then &* = -(-1)* (4.39)

If xis € {V,} then a* = (-1)"A°

If xis € {V,} thena® = -(-1)*A°
Let us show that the control law given by Eqns. (4.39) is the time-optimal one. We recall that
if the state x belongs to { V, }, then the control switches exactly once. Since the system has
three real eigenvalues, the time-optimal control can switch at most »n-/ times. Let us consider

the state

x = {1 (4.40)

which is above { V, }. Since n =3, the control law (4.39) states that & * = -1 . Suppose that
at x,, we apply the control &* = +1. From Eqn.(4.20), all the trajectories generated by
x° = +1 tend to the state x,. So, the state will remain at x, forever. Therefore, to generate
a trajectory which hits the surface { V, }, we must apply «* = -1 at x,. If the control
switches from & = -1to & = +1 at { V, }, the total number of switchings is n-/. This does
not violate the necessary conditions. Now, let us consider the other states x which are above

{V,} If uw = +1, then x tends to the state (1,1,1). and evenrtually we must switch to

s = -1 toreach { V, }. But this method requires 7 switchings which violates the necessary
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conditions. Therefore, if the state is above { V,} the control must be s = -1. By the same
reasoning if the state is below { V, }, the control & = +1 forces x to { V,}. In either case,
the total number of switchings is exactly n-/. [Ref. 1]

Now, we need to show that if a state x is on { V,} but not in { V, }, the control
must be @ = (-1)"A°. Suppose that for the point x, € {V,}, thevalueof A®is -1.
According to the control law (4.39), we must use & = +1 at x,. Application of & = +1
generates a trajectory which follows the surface { V,} and hits { V,} at a point at which the
control must switch to a = -1. This control sequence requires exactly one switching.
Suppose that at x,, we apply & = -1. The resulting trajectory will not follow the surface
{ V,}. It will go below { V,}, because, it will tend to the state (-1,-1,-1), which is below {V }
by definition. The control must switch froma = -1 to & = +1 so that the state is brought
back to { V,}. But this control sequence requires exactly » switchings. So it can not be a
time-optimal one. From the above considerations, we conclude that the control which requires

the minimum number of switchings is the time-optimal one. [Ref. 1]

5. Simulation of Minimum Time Control of the Third Order Regulator
We simulate system (4.10), with initial conditions above, below, and on the
switching surface, using @ = 1, p = 2, andy = 3. Figure 4.2 shows the three-dimensional
state trajectories emanating from an initial point above the switching surface. Time-optimal
control is shown in Fig. 4.3. The control sequence { -1, +1, -1 } drives the states to the origin
with exactly two switchings as we suggested before. State trajectories as a function of time

are shown in Fig. 4.4.
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Next, we simulate the system starting from an initial condition below the
switching surface. This time control sequence { +1, -1, +1 } drives the states to the origin,
again with exactly two switchings. Three-dimensional state trajectories are shown in Fig. 4.5.
Time-optimal control and the state trajectories as a function of time are shown in Figs. 4.6
and 4.7.

Lastly, we simulate the system starting from a point on the switching surface.
Figure 4.8 shows the three-dimensional state trajectories. Time-optimal control and the state
trajectories as a function of time are shown in Figs. 4.9 and 4.10. From Fig. 4.9 the control
law §{ -l,. +1} drives the states to the origin with only one switching .

All three simulations confirm that the control law given by (4.39) is the time-
optimal control. Again, upon reaching the origin the control effort must be shut off to keep

the system at rest.
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V. CONCLUSION

We have examined the time-optimal control problem for one second-order and one
third-order system. These systems had the following properties in common:
® The systems were linear, and time invariant.
® The transfer function of the system did not contain any zeros.
® The eigenvalues of the transfer function were real, nonpositive, and distinct.

® Control was effected by a single control variable sf) , which was bounded in
magnitude.

® The desired terminal state was the origin, which was an equilibrium point of the system.

Upon reaching the origin the control needed to be shut off in order to maintain the
system at the origin. [Ref. 1]

The method which we used to obtain the time-optimal control law was almost the same
for each of these systems. Essential steps in our synthesis of the control were,
® We first reduced the system differential equation to a set of first order equations.

® We then chose a convenient set of state variables by means of a series of linear
transformations which reduced the system matrix to its Jordan canonical form.

® We examined the Hamiltonian, and found the control which absolutely minimized the
Hamiltonian. We observed that the time-optimal control had to be piecewise constant
and could switch at most n-/ times for an nth order system.

® We then determined the control sequences which were candidates for time-optimal
control.

® We used a method of elimination to determine the time-optimal control. We found a

unique control sequence from among the candidates which would force a given state
to the origin. Then we developed the control law. [Ref. 1]
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The complexity of the controller may increase rapidly with the increase in the order of
the system. For systems whose order is higher than three, some iterative procedure must be
used to solve the system of transcendental equations that describe the switching hypersurface.
Even though the equation of the switch hypersurface is complex, from a conceptual point of
view the operation of a high-order time-optimal system presents no particular difficulty. Quite
often, knowledge of the optimal solution can help the designer to construct an excellent
suboptimal system. [Ref. 1]

Negative time approach was used in Ref. 5 to determine the time-optimal control for
a third-order system with two integrators and a single time constant. The method requires
analytic calculations of boundary conditions for each different set of eigenvalues. The process
of elimination among the candidates for time-optimal control reduces the complexity and

applicable to the higher-order systems as demonstrated in previous chapter.
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APPENDIX

PROGRAM CODE

1. OPTIMALX.M

% This program simulates the 2nd order bang-bang controller using a switching law for
% the control effort

clear,clc,clg

% Setting eigenvalues of the system

alfa=1, beta=2,

% Ratio of the Eigenvalues

k=(-beta)/(-alfa),

% State Equations for the uncoupled system (x variables)
XA=[-alfa 0;0 -beta]; XB=[-alfa -beta]’;

% State Equations for the uncoupled system (z variables)
ZA=[-alfa 0;0 -beta];, ZB=[(-1/(alfa-beta)) (1/(alfa-beta))]’;

% State Equations for the coupled system (y variables)

YA=[0 I;-alfa*beta -alfa-beta];, YB=[0 1]’

% Transition matrix between y (coupled) and z (uncoupled) systems
P=[1 1;-alfa -beta];

% Simulation time

tf=2.232;

% Time increment and number of steps for simulation
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dt=0.001; kmax=tf/dt+1;

% Equation of the switching curve for uncoupled system(x variables)
x1=-1.5:0.01:1.5;

x2=(x1./abs(x1)).*((1+abs(x1)).7k-1);

% Equation of the switching curve for uncoupled system(z variables)
c=alfa*(alfa-beta),

zl=x1; z2=((c.*z1)./(-beta*(alfa-beta)*(abs(c.*z1))).*((1+abs(c.*z1))."k-1)),
% Equation of the switching curve for coupled system(y variables)
y1=(1/(alfa*(beta”2-alfa*beta))). *(alfa. *x2-beta.*x1); y2=(1/(alfa-beta)).*(x2-x1),
x=zeros(2,kmax);, z=zeros(2,kmax);

y=zeros(2,kmax); u=zeros(1,kmax);

time=zeros(1,kmax);

% Initial conditions

x(.1)=[3 2],

z(:,1)=[1/(alfa*(alfa-beta))*x(1,1) -1/(beta*(alfa-beta))*x(2,1)]’;

y(., D=P*z(:,1);

% Discretize the Systems

[phi,del]=c2d(XA,XB,dt); [phiz,delz]=c2d(ZA,ZB,dt); [phiy,dely]=c2d(YA,YB,dt),
% Begin Simulation

for i= 1:kmax-1

u(i)=sign(x(1,i)/abs(x(1,1))*((1+abs(x(1,i)))*k-1)-x(2,1));

X(:,i+1)=phi*x(:,i)+del*u(i);
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2(:.i+1)=phiz®2(..i)+delz*u(i);

y(:,i+1)=phiy*y(..iy+dely*u(i);

time(i+1)=time(i)+dt;

end

figure(1); plot(x1,x2,'r'); xlabel("X1');ylabel("X2');

title('SWITCHING CURVE FOR UNCOUPLED SYSTEM (X VARIABLES)');
figure(2),plot(y1,y2,'m’);xlabel("Y 1'),ylabel("Y 2'),

title(SWITCHING CURVE FOR COUPLED SYSTEM (Y VARIABLES)",
figure(3), plot(time,u);grid; xlabel(' TIME (Seconds’);ylabel(MAGNITUDE),
titleCCONTROL EFFORT vs TIME');

axis({0 max(time)+0.05 -1.75 1.75]);

figure(4); plot(x(1,:),x(2,:));grid ; xlabel("X1");ylabel("X2";

title('STATE TRAJECTORIES AND SWITCHING LINE (X VARIABLES)'),
hold on; plot(x1,x2,'r:); hold off

figure(5)

plot(y(1,:),y(2,:)); grid; xlabel("Y1');ylabel('Y2');

title('STATE TRAJECTORIES AND SWITCHING LINE FOR COUPLED SYSTEM
(Y VARIABLES));

hold on ; plot(y1,y2,':");

hold off
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2. RELAY3BT.M
% This program simulates the time optimal control of a third order system having three
%real distinct negative eigenvalues
% Written by Serhat Balkan 12 April 1994
clc,clear,clg,! del *.met,
% Set the eigenvalues of the system
alfa=1; beta=2; gama=3,
% Transition matrix between y (coupled) and z (uncoupled) systems
P=[(1/((beta-alfa)*(gama-alfa) (1/((alfa-beta)*(gama-beta))).......
(1/((alfa-gama)*(beta-gama)));
(alfa/((alfa-beta)*(gama-alfa))) (beta/((alfa-beta)*(beta-gama)))...
(gama/((alfa-gama)*(gama-beta)));
(alfa~2/((beta-aifa)*(gama-alfa))) (beta”2/((alfa-beta)*(gama-beta)))....
(gama”2/((alfa-gama)*(beta-gama)))];
% State Equations for the uncoupled system (x vaniables)
XA=[-alfa 0 0;0 -beta 0,0 O -gama]; XB=[alfa beta gama]",
% State Equations for the uncoupled system (z variables)
ZA=[-alfa 0 0;0 -beta 0;0 0 -gama]; ZB=[11 1]
% State Equations for the coupled system (y variables)
YA=[01 0;0 01,
-alfa*beta*gama -(alfa*beta+alfa*gama+gama*beta) -(alfatbeta+gama)];

YB=[00 1],
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% Simulation time

tf=2.66,

% Time increment and number of steps for the simulation
dt=0.01; kmax=tf/dt+]; time=0;

% Discretize the systems

[phix,delx]=c2d(XA,XB,dt); [phiz delz]=c2d(ZA,ZB,dt),
% Set initial conditions

x(L, D=2 3 4],

2(:,1)=[(1/alfa)*x(1,1) (1/beta)*x(2,1) (1/gama)*x(3,1)]’;
y(.D=P*z(, 1),

i=0,

% Order of the system

N=3;

% From Eqn.(4.35) set:

x1=x(1,1); x2=x(2,1);

% Call function to determine w1, w2 and the optimal control

[wl,w2, deltas]=solvelb(x1,x2);
% Calculate the third point on the switching surface

x31=deitas*(-1+2*w1” gama-w2"gama),

[phiy,dely]=c2d(YA,YB,dt);

% Decide whether initial state above or below the switching surface

m=x(3,1)-x31;

% Find the optimal control which drives the states to the switching
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% surface in min. time when states are above the switching surface
while m > 0;
=i+l
u(i)=(-1"N);
x(:,i+1)=phix*x(:,i)+delx*u(i);
2(:.i+1)=phiz*z(:.iy+delz*u(i);
y(..i+1)=phiy*y(:,i)+dely*u(i);
time(i+1)=time(i)+dt;
x1=x(1,i+1);
x2=x(2,i+1);
[w1,w2,deltas}=solvelb(x1,x2);
x3 1=deltas*(-1+2*w1"gama-w2"gama);
m=x(3,i+1)-x31;
end;
% Find the optimal control which drives the states to the switching surface
% in min. time when states are below the switching surface
while m < 0;
=i+l
u(i)=-(-1"N);
x(:,i+1)=phix*x(:,i)+delx*u(i);
z(:,i+1)=phiz*z(..iy+delz*u(i);

y(.i+1)=phiy*y(:,i)+dely*u(i);
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time(i+1)=time(i)+dt,
x1=x(1,i+1);
x2=x(2,i+1);
[wl,w2,deltas]=solvelb(x1,x2);
x3 1=deltas*(-1+2*w1/gama-w2"gama);
m=x(3,i+1)-x31;
end;
% Find the optimal' control which drives the states to the switching
% curvce in min. time when states are on the switching surface
if m==0
counter=1;
else
counter=i,
end
for i=counter:kmax-1;
x1=x(1,1);
X2=x(2,1);
[wl,w2,deltas]=solvelb(x1,x2);

if (deltas*x(1,i)-1-2*wl+w2 ==0) &....

(deltas*x(2,i)-1-2*w1"2+w2"2 ==0 & deltas*x(3,1)-1-2*w1”gama+w2~gama == 0),

u(i)=-(-1"N)*deltas;

else
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u(i}=(-1"N)*deltas;

end

x(.,i+1)=phix*x(;,i)+delx*u(i);

z(:,i+1)=phiz*z(: i) +delz*u(i);
y(:,i+1)=phiy*y(.,i)y+dely*u(i);

time(i+1)=time(i)+dt;
end
% Plot the outputs
plot3d(x(1,:),x(2,:),x(3,:),-45,45);
title('3-D PLOT OF THE STATE TRAJECTORIES FOR UNCOUPLED SYSTEM
(X VARIABLES)),
meta 3ax; pause,clg,
plot(time,x(1,:),time,x(2,:),time,x(3,:));grid,
title('STATE TRAJECTORIES vs TIME (X VARIABLES)"),
xlabel('TIME (seconds)');ylabel(MAGNITUDE'),
meta 3bx,pause,clg ;axis([0 max(time)+0.1 -1.75 1.75]);
plot(time(1:length(u)),u);grid,
xlabel('TIME (seconds)');ylabel(MAGNITUDE),
titleCOPTIMAL CONTROL EFFORT (u(t)) vs TIME'),
meta 3¢
axis(‘'normal'); pause,

plot3d(y(1,:),y(2.)).y(3,:),75,-45);
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title('3-D PLOT OF THE STATE TRAJECTORIES FOR COUPLED SYSTEM
(Y VARIABLES)),

meta 3ay; pause,clg,

plot(time,y(1,:),time,y(2,:),time,y(3,));grid,

title('STATE TRAJECTORIES vs TIME (Y VARIBLES));

xlabel('TIME (seconds)');ylabel(MAGNITUDE));

meta 3by,pause,clg
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3. SOLVE1IB.M
% Function solvelb decides the optimal control and the required time to drive the states
% to the switching surface or to the switching curve and passes these values to the
% main program (relay3bt.m).
% Written by Serhat Balkan 12 April 1994
function [wl,w2 deltas] = solvelb(x1,x2)
delta=1;
% al, a2, and delta are the local variables corresponding to wl, w2, and deltastar
Yerespectively.
[al,a2,delta]=solve2b(x1,x2 delta);
% Check if Eqn.(4.31) is satisfied or not
if (al>1) & (a2>al)
wl=al, w2=a2;
deltas=delta;
else
delta=-1,
[al,a2 delta]=solve2b(x1,x2,delta);
wl=al;
w2=a2;
deltas=delta;
end

end
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4. SOLVE2B.M
% Function Solve2b calculates the required time to drive the states to the switching
% surface or to the switching curve processing the given states and passes these values
% to the function solvelb
% Wiritten by Serhat Balkan 12 April 1994
function [al,a2 delta) = solve2b(x1,x2,deita),
% Use the first two equations of Eqn.(4.33) to find wl, and w2 (al and a2 corresponds to
% w1 and w2 respectively)
al=delta*x1+1+0.5*sqrt(2*(x1/2)+4*delta*x1-2*delta*x2);
a2=2*al-delta*x1-1;
% Eliminating any complex value
if imag(al) ~= 0;
delta=-delta;
al=delta*x1+1+0.5*sqrt(2*(x1/2)+4*delta*x1-2*delta*x2);
a2=2*al-delta*x1-1;

end
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